李思晓又一个WordPress站点

浏览: 249

星夜下的数学王子:高斯-数学诗话乳山热线招聘贺新郎·高斯数学君王说。想当年、不伦瑞克,卧龙诸葛。年少成名怀鸿志,笔落惊风衮雪。雄狮起、??


星夜下的数学王子:高斯-数学诗话乳山热线招聘
贺新郎·高斯
数学君王说。
想当年、不伦瑞克,卧龙诸葛。
年少成名怀鸿志,笔落惊风衮雪。
雄狮起、英姿勃发。
算术奇思开数论,渐风流、写尽天边月。
符号里,云崖阅。
星移斗转家乡别。
正哥廷、革故鼎新,风云更迭。
公式奔来寻真理,德意地灵人杰。
叹学派、欧洲冠绝!
伟烈丰功垂青史,又几何、创想诗如铁。
看巨擘,超先哲。

约翰·卡尔·弗利德里希·高斯(Johann Carl Friedrich Gauss苏诗诗,1777年4月30日-1855年2月23日,男男嘿咻享年77岁),德国著名数学家、物理学家、天文学家、大地测量学家,近代数学奠基者之一。高斯被认为是历史上最重要的数学家之一,并享有"数学王子"之称。
高斯和阿基米德、牛顿、欧拉并列为世界四大数学家。一生成就极为丰硕,以他名字"高斯"命名的成果达110个霍思纬,属数学家中之最。他对数论、代数、统计、分析、微分几何、大地测量学、地球物理学、力学、静电学、天文学、矩阵理论和光学皆有贡献。

德国10马克纸币中的高斯形象
横空出世
高斯是一对贫穷夫妇的唯一的儿子。母亲是一个贫穷石匠的女儿,虽然十分聪明,但却没有接受过教育。在她成为高斯父亲的第二个妻子之前,她从事女佣工作。他的父亲曾做过园丁,工头周华强,商人的助手和一个小保险公司的评估师。
父亲格尔恰尔德·迪德里赫对高斯要求极为严厉,甚至有些过分。高斯尊重他的父亲,并且秉承了其父诚实、谨慎的性格。高斯很幸运地有一位鼎力支持他成才的母亲。高斯一生下来,就对一切现象和事物十分好奇,而且决心弄个水落石出,这已经超出了一个孩子能被许可的范围。当丈夫为此训斥孩子时,她总是支持高斯,坚决反对顽固的丈夫想把儿子变得跟他一样无知。
在成长过程中,幼年的高斯主要得力于他的母亲罗捷雅和舅舅弗利德里希(Friedrich)。弗利德里希富有智慧,为人热情而又聪明能干投身于纺织贸易颇有成就。他发现姐姐的儿子聪明伶利,因此他就把一部分精力花在这位小天才身上,用生动活泼的方式开发高斯的智力。
若干年后,已成年并成就显赫的高斯回想起舅舅为他所做的一切,深感对他成才之重要,他想到舅舅多产的思想,不无伤感地说,舅舅去世使"我们失去了一位天才"。正是由于弗利德里希慧眼识英才,经常劝导姐夫让孩子向学者方面发展,才使得高斯没有成为园丁或者泥瓦匠。

年少成名
1788年,11岁的高斯进入了文科学校,他在新的学校里,所有的功课都极好,特别是古典文学、数学尤为突出。他的教师们和慈母把他推荐给不伦瑞克公爵,希望公爵能资助这位聪明的孩子上学。
不伦瑞克公爵卡尔·威廉·斐迪南召见了14岁的高斯李纯恩。这位朴实、聪明但家境贫寒的孩子赢得了公爵的同情,公爵慷慨地提出愿意作高斯的资助人,让他继续学习。
1792年高斯进入不伦瑞克的卡罗琳学院(现为不伦瑞克技术大学)继续学习。1795年,公爵又为他支付各种费用,送他入德国著名的哥廷根大学,这样就使得高斯得以按照自己的理想,勤奋地学习和开始进行创造性的研究。
1796年高斯19岁,发现了正十七边形的尺规作图法,解决了自欧几里德以来悬而未决的一个难题。同年,发表并证明了二次互反律。这是他的得意杰作玳瑁姑姑,一生曾用八种方法证明,称之为“黄金律”。

下面以图形和动画来说明高斯是如何完成这个高难度的历史性难题的。



数学王子
1799年高斯发表了他的博士论文,这论文证明了代数一个重要的定理:任一多项式都有(复数)根。这结果称为“代数学基本定理”(Fundamental Theorem of Algebra)。
事实上在高斯之前有许多数学家认为已给出了这个结果的证明,可是没有一个证明是严密的。高斯把前人证明的缺失一一指出来,然后提出自己的见解,他一生中共给出了四个不同的证明。

1801年房客别这样,二十四岁的高斯出版了《算术探究》(Disquesitiones Arithmeticae),这本书以拉丁文写成,原本有八章,由于资金不够,只好印了七章。这本书除了第七章介绍代数基本定理外,其余都是数论,章慕良可以说是数论第一本有系统的着作,高斯第一次介绍“同余”(Congruence)的概念。“二次互反律”也赫然书中。

当时的天文界正在为火星和木星间庞大的间隙烦恼不已,认为火星和木星间应该还有行星未被发现。在1801年,意大利的天文学家Piazzi,发现在火星和木星间有一颗新星何荣锋。它被命名为“谷神星”(Cere)。现在我们知道它是火星和木星的小行星带中的一个,但当时天文学界争论不休,有人说这是行星,有人说这是彗星众夫盈门。必须继续观察才能判决不死儿魂,但是Piazzi只能观察到它9度的轨道,再来,它便隐身到太阳后面去了。因此无法知道它的轨道黑道仲裁者,也无法判定它是行星或彗星。
高斯这时对这个问题产生兴趣,他决定解决这个捉摸不到的星体轨迹的问题。高斯自己独创了只要三次观察,就可以来计算星球轨道的方法。他可以极准确地预测行星的位置。果然,谷神星准确无误的在高斯预测的地方出现。这个方法——虽然他当时没有公布——就是“最小平方法” (Method of Least Square)。

1802年,他又准确预测了小行星二号——智神星(Pallas)的位置,这时他的声名远播,荣誉滚滚而来,俄国圣彼得堡科学院选他为会员,发现Pallas的天文学家Olbers请他当哥廷根天文台主任,他没有立刻答应,到了1807年才前往哥廷根就任星际禁区。
1809年他写了《天体运动理论》二册,第一册包含了微分方程、圆椎截痕和椭圆轨道,第二册他展示了如何估计行星的轨道。高斯在天文学上的贡献大多在1817年以前,但他仍一直做着观察的工作到他七十岁为止。虽然做着天文台的工作,他仍抽空做其他研究。为了用积分解天体运动的微分方程,他考虑无穷级数,并研究级数的收敛问题,在1812年,他研究了超几何级数(Hypergeometric Series),并且把研究结果写成专题论文,呈给哥廷根皇家科学院。

1820到1830年间,高斯为了测绘汗诺华(Hanover)公国(高斯住的地方)的地图,开始做测地的工作,他写了关于测地学的书,由于测地上的需要,他发明了日观测仪(Heliotrope)。为了要对地球表面作研究,他开始对一些曲面的几何性质作研究魏汉冬。

1827年他发表了《曲面的一般研究》 (Disquisitiones generales circa superficies curva),涵盖一部分现在大学念的“微分几何”。

他还对透过实际的大地测量确定地球形状感兴趣,这个工作使他回到了纯理论。他利用这些测量数据发展了曲面论阿路加,按照这一理论,一个曲面的特徵只要透过测量曲面上曲线的长度就能确定。
这种“内蕴曲面论”启发了他的学生黎曼发展三维或多维空间的一般内蕴几何学。这是黎曼1854年在格丁根就职演说的题目,据说也是困扰高斯的问题。大约60年以后黎曼的思想形成爱因斯坦广义相对论的数学基础。

在1830到1840年间,高斯和一个比他小二十七岁的年轻物理学家——韦伯(Withelm Weber)共同从事磁的研究,他们的合作是很理想的:韦伯做实验,高斯研究理论,韦伯引起高斯对物理问题的兴趣,而高斯用数学工具处理物理问题,影响韦伯的思考工作方法曾咏熙。
1833年高斯从他的天文台拉了一条长八千尺的电线,跨过许多人家的屋顶,一直到韦伯的实验室,以伏特电池为电源,构造了世界第一个电报机。
1835年高斯在天文台里设立磁观测站,并且组织“磁协会”发表研究结果,引起世界广大地区对地磁作研究和测量。高斯已经得到了地磁的准确理,他为了要获得实验数据的证明,他的书《地磁的一般理论》拖到1839年才发表。
1840年他和韦伯画出了世界第一张地球磁场图梦见雪崩,而且定出了地球磁南极和磁北极的位置。 1841年美国科学家证实了高斯的理论,找到了磁南极和磁北极的确实位置。
高斯对自己的工作态度是精益求精,非常严格地要求自己的研究成果。他自己曾说:“宁可发表少,但发表的东西是成熟的成果。”许多当代的数学家要求他,不要太认真,把结果写出来发表,这对数学的发展是很有帮助的。

星夜长眠
1849年举办了高斯获博士学位50周年庆祝会,为此高斯准备了他早期对代数基本定理证明的一个新版本。由于健康状况愈来愈差,这成了他最后的著作。给他带来最大欢乐和荣誉的还是哥廷根市赠与他的荣誉公民头衔。由于他在数学、天文学、大地测量学和物理学中的杰出研究成就,他被选为许多科学院和学术团体的成员。他谢绝了许多大学请他当教授的邀请而一直留在哥廷根大学的院系中,直至1855年2月23日与世长辞。

不朽箴言
浅薄的学识使人远离神,广博的学识使人接近神天天书吧。——高斯
数学,科学的皇后;算术,数学的皇后翟艺舒。——高斯
全文详见:https://p66p.cn/20420.html

TOP